CF411D1E The same permutation
問題概要(原文)
$p={1,2,3, \ldots, N }$ なる数列が与えられる. $i<j$ を満たす $(i,j)$ それぞれについて $\mathrm{swap}(p_i,p_j)$ をちょうど $1$ 回行ったあとも,$p={ 1,2,3,.\ldots, N }$ となるようにすることは可能か? 可能なら手順の一例を示せ.
考察
自明な考察として,スワップを $1$ 度行うと,サイクルを切るかつなぐかのどちらかができる. よって,奇数回のスワップでは必ず不可能である.
スワップ回数は $N(N+1)/2$ なので,これが偶数となるとき $N \equiv 0 \bmod{4}$ または $N \equiv 1 \bmod{4}$ を満たす. これを満たす $N$ は必ず構成可能であることを示す.
$N=0,1$ は明らかに条件を満たす. $N \geq 4$ を満たす場合は以下のようにしてサイズを $4$ 小さくすることが可能である.
- $i = 5,...,N$ について,昇順に $\mathrm{swap}(p_1,p_i)$ $(N,2,3,4,1,5,\ldots,N-1)$
- $\mathrm{swap}(p_1,p_2)$ $(2,N,3,4,1,5,\ldots,N-1)$
- $i = 5,...,N$ について,降順に $\mathrm{swap}(p_1,p_i)$ $(2,1,3,4,5,\ldots,N)$
- $i = 5,...,N$ について,昇順に $\mathrm{swap}(p_3,p_i)$ $(2,1,N,4,3,5,\ldots,N-1)$
- $\mathrm{swap}(p_3,p_4)$ $(2,1,4,N,3,5,\ldots,N-1)$
- $i = 5,...,N$ について,降順に $\mathrm{swap}(p_4,p_i)$ $(2,1,4,3,5,\ldots,N)$
- $\mathrm{swap}(p_1,p_3)$ $(4,1,2,3,5,\ldots,N)$
- $\mathrm{swap}(p_2,p_4)$ $(4,3,2,1,5,\ldots,N)$
- $\mathrm{swap}(p_1,p_4)$ $(1,3,2,4,5,\ldots,N)$
- $\mathrm{swap}(p_2,p_3)$ $(1,2,3,4,5,\ldots,N)$
上の操作を行うと,$(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)$ の $6$ 種類と,$(1,i),(2,i),(3,i),(4,i)$ の $4(N-4)$ 種類を使うことになり,長さが $4$ 小さくなる. 再帰的に繰り返していけば,いつかは $N=0,1$ になる.
ソースコード
using System;
using System.Linq;
using System.Collections.Generic;
using Debug = System.Diagnostics.Debug;
using StringBuilder = System.Text.StringBuilder;
using Number = System.Int64;
namespace Program
{
public class Solver
{
public void Solve()
{
var n = sc.Integer();
if (n % 4 >= 2) { IO.Printer.Out.WriteLine("NO"); return; }
IO.Printer.Out.WriteLine("YES");
var a = Enumerate(n + 1, x => x);
for (; n >= 4; n -= 4)
f(n - 4, n - 3, n - 2, n - 1, n);
}
void f(int x, params int[] a)
{
for (int i = 1; i <= x; i++)
IO.Printer.Out.WriteLine("{0} {1}", i, a[0]);
IO.Printer.Out.WriteLine("{0} {1}", a[0], a[1]);
for (int i = x; i >= 1; i--)
IO.Printer.Out.WriteLine("{0} {1}", i, a[1]);
for (int i = 1; i <= x; i++)
IO.Printer.Out.WriteLine("{0} {1}", i, a[2]);
IO.Printer.Out.WriteLine("{0} {1}", a[2], a[3]);
for (int i = x; i >= 1; i--)
IO.Printer.Out.WriteLine("{0} {1}", i, a[3]);
IO.Printer.Out.WriteLine("{0} {1}", a[0], a[2]);
IO.Printer.Out.WriteLine("{0} {1}", a[1], a[3]);
IO.Printer.Out.WriteLine("{0} {1}", a[0], a[3]);
IO.Printer.Out.WriteLine("{0} {1}", a[1], a[2]);
}
public IO.StreamScanner sc = new IO.StreamScanner(Console.OpenStandardInput());
static T[] Enumerate<T>(int n, Func<int, T> f) { var a = new T[n]; for (int i = 0; i < n; ++i) a[i] = f(i); return a; }
static public void Swap<T>(ref T a, ref T b) { var tmp = a; a = b; b = tmp; }
}
}
#region main
static class Ex
{
static public string AsString(this IEnumerable<char> ie) { return new string(System.Linq.Enumerable.ToArray(ie)); }
static public string AsJoinedString<T>(this IEnumerable<T> ie, string st = " ") { return string.Join(st, ie); }
static public void Main()
{
var solver = new Program.Solver();
solver.Solve();
Program.IO.Printer.Out.Flush();
}
}
#endregion
#region Ex
namespace Program.IO
{
using System.IO;
using System.Text;
using System.Globalization;
public class Printer: StreamWriter
{
static Printer() { Out = new Printer(Console.OpenStandardOutput()) { AutoFlush = false }; }
public static Printer Out { get; set; }
public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } }
public Printer(System.IO.Stream stream) : base(stream, new UTF8Encoding(false, true)) { }
public Printer(System.IO.Stream stream, Encoding encoding) : base(stream, encoding) { }
public void Write<T>(string format, T[] source) { base.Write(format, source.OfType<object>().ToArray()); }
public void WriteLine<T>(string format, T[] source) { base.WriteLine(format, source.OfType<object>().ToArray()); }
}
public class StreamScanner
{
public StreamScanner(Stream stream) { str = stream; }
public readonly Stream str;
private readonly byte[] buf = new byte[1024];
private int len, ptr;
public bool isEof = false;
public bool IsEndOfStream { get { return isEof; } }
private byte read()
{
if (isEof) return 0;
if (ptr >= len) { ptr = 0; if ((len = str.Read(buf, 0, 1024)) <= 0) { isEof = true; return 0; } }
return buf[ptr++];
}
public char Char() { byte b = 0; do b = read(); while ((b < 33 || 126 < b) && !isEof); return (char)b; }
public string Scan()
{
var sb = new StringBuilder();
for (var b = Char(); b >= 33 && b <= 126; b = (char)read())
sb.Append(b);
return sb.ToString();
}
public string ScanLine()
{
var sb = new StringBuilder();
for (var b = Char(); b != '\n'; b = (char)read())
if (b == 0) break;
else if (b != '\r') sb.Append(b);
return sb.ToString();
}
public long Long()
{
if (isEof) return long.MinValue;
long ret = 0; byte b = 0; var ng = false;
do b = read();
while (b != 0 && b != '-' && (b < '0' || '9' < b));
if (b == 0) return long.MinValue;
if (b == '-') { ng = true; b = read(); }
for (; true; b = read())
{
if (b < '0' || '9' < b)
return ng ? -ret : ret;
else ret = ret * 10 + b - '0';
}
}
public int Integer() { return (isEof) ? int.MinValue : (int)Long(); }
public double Double() { var s = Scan(); return s != "" ? double.Parse(s, CultureInfo.InvariantCulture) : double.NaN; }
private T[] enumerate<T>(int n, Func<T> f)
{
var a = new T[n];
for (int i = 0; i < n; ++i) a[i] = f();
return a;
}
public char[] Char(int n) { return enumerate(n, Char); }
public string[] Scan(int n) { return enumerate(n, Scan); }
public double[] Double(int n) { return enumerate(n, Double); }
public int[] Integer(int n) { return enumerate(n, Integer); }
public long[] Long(int n) { return enumerate(n, Long); }
}
}
#endregion
コメント
- サイズを再帰的に小さくできる方法をうまく探すのが本質